Maude’s Internal Strategies

Francisco Duréan

DLCC, Universidad de Mélaga, Campus de Teatinos, Malaga, Spain
duran@lcc.uma.es

Abstract. Maude is a reflective language supporting both rewriting logic and
membership equational logic. Reflection is systematically exploited in Maude, en-
dowing the language with powerful metaprogramming capabilities, including declar-
ative strategies to guide the deduction process.

1 Introduction

Maude [3,4] is a high-level language and high-performance system sup-
porting both equational and rewriting logic computation for a wide
range of applications. Rewriting logic [12] is a logic of change that can
naturally deal with state and with highly nondeterministic concurrent
computations. In rewriting logic, the state space of a distributed sys-
tem is specified as an algebraic data type in terms of an equational
specification (X, F), where X is a signature of sorts (types) and oper-
ations, and F is a set of (conditional) equational axioms. In Maude,
the underlying equational logic is membership equational logic [13], a
Horn logic whose atomic sentences are equalities t = ¢’ and membership
assertions of the form ¢ : s, stating that a term t has sort s.

Maude’s functional and system modules are, respectively, member-
ship equational theories and rewrite theories. The equations in func-
tional modules, considered as rules in the left to right direction, are
assumed to be Church-Rosser and terminating. Therefore, canonical
forms are reached by canonical simplification regardless of the order
of application. Although the (equational) reductions in Maude are ba-
sically innermost (or eager), Maude is able to exhibit an outermost
(or lazy) behavior on particular operator arguments by using strategy
annotations [10].

A rewrite theory is a pair (T, R), with T" a membership equational
theory, and R a collection of (labelled and possibly conditional) rewrite
rules involving terms in the signature of 7. Rewriting in (7', R) hap-
pens modulo the equational axioms in 7.' The rules in R need not

! Maude supports rewriting modulo all combinations of associativity, commutativ-
ity, and identity.

be Church-Rosser and need not be terminating, opening up in this
way a whole world of new applications. This generality needs some
control when the specifications become executable, because the user
needs to make sure that the rewriting process does not go in undesired
directions.

In those cases in which we just want to test for executability, or con-
sider the evolution of the system with no specific interest in a concrete
execution path, Maude provides two built-in strategies: The rewrite
command follows a top-down lazy rule-fair strategy, and the frewrite
command follows a position-fair bottom-up strategy. Maude also pro-
vides a search command, for those cases in which we are interested
in exploring all possible execution paths from the starting term for
states satisfying some property. The search command does a breadth-
first exploration of the tree of possible rewrites.

In general however we may be interested in other forms of execu-
tion, and the choice of appropriate strategies is crucial for executing
rewrite theories. In the Maude system, this need for providing strate-
gies for controlling the rewriting process has been satisfied by devel-
oping strategies at the metalevel. Strategies are defined in extensions
of the predefined module META-LEVEL by using predefined functions in
it, like metaReduce, metaApply, metaXapply, etc. as building blocks.
It is in this way possible to define at the metalevel a whole variety
of internal strategy languages [2,5], that is, the strategy language is
defined inside the same rewriting logic framework, instead of being
defined as an add-on extralogical feature.

2 Reflection and the META-LEVEL module

Informally, a reflective logic is a logic in which important aspects of its
metatheory can be represented at the object level in a consistent way,
so that the object-level representation correctly simulates the relevant
metatheoretic aspects. In particular, rewriting logic is reflective [2],
and Maude’s language design and implementation make systematic
use of the fact that rewriting logic is reflective. The predefined func-
tional module META-LEVEL efficiently implements key functionality of
the universal theory U.

META-LEVEL has sorts Term and Module, so that the representations
of a term ¢ and of a module R are, respectively, a term ¢ of sort Term
and a term R of sort Module. The module META-LEVEL also provides

key metalevel functions for rewriting and evaluating terms at the met-
alevel, namely, metaApply, metaXapply, metaRewrite, metaReduce,
etc. For example, the function metaReduce takes as arguments the
representation of a module R and the representation of a term ¢ in
that module, and returns the representation of the fully reduced form
of the term t using the equations in R, together with its corresponding
sort or kind:

op metaReduce : Module Term -> ResultPair [special ...] .
op {_,_} : Term Type -> ResultPair [ctor] .

The operation metaXapply applies a rule on a term in any possible
position. The first four arguments are the metarepresentation of a
module R, the metarepresentation of a term ¢ in R, a label [of some
rules in R, and a set of assignments (possibly empty) defining a partial
substitution o for the variables in those rules. The last natural number
enumerates the solutions, since there can be different such rewrites
with different substitutions and at different positions. The other two
numeric arguments indicate the minimum and maximum depth in the
term where the application of the rule can take place.

op metaXapply : Module Term Qid Substitution Nat Bound Nat
~> Result4Tuple? [special ...] .

op {_,_,_,_} : Term Type Substitution Context
-> Result4Tuple [ctor] .

metaXapply returns a tuple of sort Result4Tuple consisting of a term,
with the corresponding sort or kind, a substitution, and the context
inside the given term where the rewriting has taken place.

3 Internal Strategies

There is great freedom for defining many different types of strategies,
or even many different strategy languages inside Maude. This can be
done in a completely user-definable way, so that users are not limited
by a fixed and closed particular strategy language.

Rewriting logic has very good properties as a logical and semantic
framework, in which many other logics and many semantic formalisms
can be naturally represented [11,14]. In Maude, the meta-theory of
rewriting logic is accessible to the user in a clear and principled way,
giving to Maude very good properties as a logical and semantic frame-
work, in which many different logics and formalisms can be expressed

and executed. In fact, some of the most interesting applications of
Maude are metalanguage applications, in which Maude is used to cre-
ate executable environments for different logics, theorem provers, lan-
guages, and models of computation.

Reflection allows a complete control of the rewriting of a given
term using the rewrite rules in a theory. This expressive power has
been used in different applications. For example, in Real Time Maude
[16] modules there is a distinction between eager and lazy rules, and
only rewriting paths that satisfy the requirement that lazy rules are
only applied when no eager rule can be applied make sense for this kind
of modules; a object-fair strategy was used in Mobile Maude [6] a long
time before such an strategy was available in Maude (such an internal
strategy was in fact a prototype specification of the frewrite object-
fair strategy currently available in Maude); Durén, Escobar and Lucas
have proposed in [7] an extension of Full Maude which includes com-
mands that compute (constructor) normal forms of initial expressions
even when the use of strategy annotations together with the built-in
computation strategy of Maude is not able to obtain them; the same
authors have proposed in [8] another extension furnishing Maude with
the ability of dealing with on-demand strategy annotations; Braga [1]
extended Full Maude to support rewrites in the conditions of rules
some time before it was available in Maude to be able to represent
Action Semantics [15]; Pita and Marti-Oliet proposed in [17] the use
of a meta-object to control the execution of a set of rules, which had
to be applied following a specific order; etc.

Although very powerful, there are many applications in which sim-
pler strategies are enough, for which it would be desirable to provide
ways of avoiding the conceptual complexity of going to the metalevel.
In this line, Marti-Oliet, Meseguer, and Verdejo have proposed in [?]
an object-level basic strategy language for Maude very close to the
ELAN strategies, and Durdn, Roldan and Vallecillo have proposed
generic invariant-driven strategies that control the execution of sys-
tems by guaranteeing that the given invariants are satisfied [9]. Both
proposals has been implemented in Maude (the first one as an exten-
sion of Full Maude), which shows the expressiveness of the reflective
capabilities of Maude for defining strategies.

The Maude system, its documentation, a collection of examples
and case studies, and a list of related papers are available (free of
charge) at http://maude.cs.uiuc.edu.

References

1.

10.

11.

12.

13.

14.

15.
16.

17.

C. O. Braga. Rewriting Logic as a Semantic Framework forModular Structural
Operational Semantics. PhD thesis, Departamento de Informaética, Pontificia
Universidade Catdlica de Rio de Janeiro, Brasil, 2001.

. M. Clavel. Reflection in General Logics and in Rewriting Logic with Applica-

tions to the Maude Language. PhD thesis, Universidad de Navarra, 1998.

M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. Quesada. Maude: Specification and programming in rewriting logic. Theo-
retical Computer Science, 285:187-243, 2002.

M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
C. Talcott. Maude 2.0 manual. Available in http://maude.cs.uiuc.edu.,
June 2003.

M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical
Computer Science, 285, 2002.

F. Duran, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile Maude. In
Proceedings of Joint Symposium ASA/MA 2000, volume 1882 of Lecture Notes
in Computer Science. Springer, 2000.

F. Duran, S. Escobar, and S. Lucas. New evaluation commands for maude
within full maude. In Proceedings of 5th International Workshop on Rewriting
Logic and its Applications (WRLA’04), 2004.

F. Duran, S. Escobar, and S. Lucas. On-demand evaluation for maude. In
Proceedings of RULE’04, 2004.

F. Duran, M. Rolddn, and A. Vallecillo. Invariant-driven strategies for maude.
In Proceedings of WRS’04, 2004.

S. Eker. Term rewriting with operator evaluation strategy. In C. Kirch-
ner and H. Kirchner, editors, Proceedings of 2nd International Workshop on
Rewriting Logic and its Applications (WRLA’98), volume 15 of Electronic
Notes in Theoretical Computer Science. Elsevier, 1998. Available at http:
//www.elsevier.nl/locate/entcs/volumel5.html.

N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. volume 9, pages 1-87. Kluwer Academic Publishers, second edition,
2002.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96:73—-155, 1992.

J. Meseguer. Membership algebra as a logical framework for equational speci-
fication. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development
Techniques, volume 1376 of Lecture Notes in Computer Science, pages 18—61.
Springer, 1998.

J. Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Computational Logic. Springer, 1999.

P. Mosses. Action Semantics. Cambridge University Press, 1992.

P. C. Olveczky and J. Meseguer. Specification of real-time and hybrid systems
in rewriting logic. Theoretical Computer Science, 285, 2002.

I. Pita and N. Marti-Oliet. A Maude specification of an object-oriented model
for telecommunication networks. Theoretical Computer Science, 285, 2002.

